Solution of a singular integral equation and its application to water wave problems
نویسندگان
چکیده
In the present paper, the solution of a singular integral equation with logarithmic kernel in two disjoint intervals (0, a)4(b, ∞), (a, b are finite) is obtained by using function theoretic method. The two cases are considered when the unknown function satisfying the integral equation is unbounded or bounded at both nonzero finite end points of the interval. In the latter case, two solvability conditions are to be satisfied in order that the solution of the integral equation exists. We have used these two solvability conditions to evaluate the amplitude of waves at infinity for the three well-known water wave problems. These are: (i) scattering of water waves by a vertical plate submerged in deep water, (ii) generation of waves due to a line source in front of a vertical plate submerged in deep water, and (iii) generation of waves due to rolling of a submerged vertical plate.
منابع مشابه
Numerical Solution of Weakly Singular Ito-Volterra Integral Equations via Operational Matrix Method based on Euler Polynomials
Introduction Many problems which appear in different sciences such as physics, engineering, biology, applied mathematics and different branches can be modeled by using deterministic integral equations. Weakly singular integral equation is one of the principle type of integral equations which was introduced by Abel for the first time. These problems are often dependent on a noise source which a...
متن کاملNumerical Solution of a Free Boundary Problem from Heat Transfer by the Second Kind Chebyshev Wavelets
In this paper we reduce a free boundary problem from heat transfer to a weakly Singular Volterra integral equation of the first kind. Since the first kind integral equation is ill posed, and an appropriate method for such ill posed problems is based on wavelets, then we apply the Chebyshev wavelets to solve the integral equation. Numerical implementation of the method is illustrated by two ben...
متن کاملApplication of Boundary Element Method to 3 D Submerged Structures With Open Ends (RESEARCH NOTE)
This paper presents a three dimensional application of direct Boundary-Element Method (BEM) for computing interaction of sinusoidal waves with a large submerged open bottom structure near the floor with finite depth. The wave diffraction problem is formulated within the framework of linearized potential theory and solved numerically with direct BEM. A computer program based on BEM is developed ...
متن کاملA finite difference method for the smooth solution of linear Volterra integral equations
The present paper proposes a fast numerical method for the linear Volterra integral equations withregular and weakly singular kernels having smooth solutions. This method is based on the approx-imation of the kernel, to simplify the integral operator and then discretization of the simpliedoperator using a forward dierence formula. To analyze and verify the accuracy of the method, weexamine samp...
متن کاملCAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS
In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...
متن کامل